
Critical behavior of a general O(n)-symmetric model of two n-vector fields in D = 4 − 2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 095003

(http://iopscience.iop.org/1751-8121/42/9/095003)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/9
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 095003 (24pp) doi:10.1088/1751-8113/42/9/095003

Critical behavior of a general O(n)-symmetric model
of two n-vector fields in D = 4 − 2ε

Yuri M Pis’mak1, Alexej Weber2 and Franz J Wegner2

1 Department of Theoretical Physics, State University Saint-Petersburg, Russia
2 Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Germany

Received 2 October 2008, in final form 2 January 2009
Published 4 February 2009
Online at stacks.iop.org/JPhysA/42/095003

Abstract

The critical behavior of the O(n)-symmetric model with two n-vector fields
is studied within the field-theoretical renormalization group approach in a
D = 4 − 2ε expansion. Depending on the coupling constants, the β-functions,
fixed points and critical exponents are calculated up to the one- and two-loop
order, respectively (η in two- and three-loop order). Both continuous lines of
fixed points and O(n)×O(2) invariant discrete solutions were found. Apart
from already known fixed points two new ones arise. One agrees in one-loop
order with a known fixed point, but differs from it in two-loop order.

PACS numbers: 11.10.−z, 11.10.Gh, 11.10.Hi, 11.10.Kk, 11.25.Hf, 11.55.Hx,
64.60.ae

1. Introduction

The renormalization group approach provides a natural framework for the understanding of
critical properties of phase transitions. A very large variety of critical phenomena can be
described by the so-called φ4 models. The simple O(n)-symmetric one-field model

SO(n)(φ) = 1
2 [(∇φ)2 + τφ2] + 1

4!g(φ2)2, (1)

where φ = (φ1, . . . , φn) is a real n-component vector field, while τ is a temperature-like
parameter and g > 0, was extended in [1] to the interplay of two vector fields under the
O(n)+O(m) symmetry

SO(n)+O(m)(φ1, φ2) = 1
2

[
(∇φ1)

2 + (∇φ2)
2 + τ1φ

2
1 + τ2φ

2
2

]
+ 1

4!

[
g1

(
φ2

1

)2
+ g2

(
φ2

2

)2
+ g3

(
φ2

1

)(
φ2

2

)]
. (2)

Six different fixed points were found. Three of them are always unstable and the stability
of three others depends on n and m. The O(n)+O(m) model has been used to describe
multicritical phenomena. We mention the critical behavior of uniaxial antiferromagnets
in a magnetic field parallel to the field direction [1] and the SO(5) theory of high-Tc

superconductors [2–4]. Also interesting phenomena of inverse symmetry breaking, symmetry
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nonrestoration and re-entrant phase transitions were reported [5, 6]. This model as well as
model (3) presented below has also been investigated in [7].

Recently, frustrated spin systems with noncollinear or canted spin ordering have been
the object of intensive research [8–11]. Examples are helical magnets and layered triangular
Heisenberg antiferromagnets [12]. In the corresponding action

SO(n)×O(2)(φ1, φ2) = 1
2

[
(∇φ1)

2 + (∇φ2)
2 + τ

(
φ2

1 + φ2
2

)]
+ 1

4!u
(
φ2

1 + φ2
2

)2
+ 1

4!v
[
(φ1φ2)

2 − (
φ2

1

)(
φ2

2

)]
(3)

the scalar product φ1φ2 is present [13–15]. Both fields have n components and the model
possesses the O(n)×O(2) symmetry. In the 4 − 2ε expansion, the number of fix points (FP)
and their stability depend on n, however different theoretical methods lead to contradictory
results [4].

The results based on three-loop renormalization group calculations [16–18] show that in
three-dimensional chiral magnets with n = 2, 3 critical fluctuations destroy continuous phase
transitions converting them into the first-order ones, i.e. the chiral class of universality does
not exist. On the other hand, the analysis of the higher-order—five-loop and six-loop—3D

RG expansions reveals a new stable fixed point for physical values of n [19]. This new fixed
point turns out to be a focus [20] that governs the critical behavior of the system in a somewhat
unusual way. It was found to exist only for n < 6 [21] having no generic relation to the stable
chiral fixed point seen at small ε and large n, since for small ε one obtains complex ω’s in
the region of complex fixed point couplings, whereas the analysis [19–21] predicts real fixed
point couplings and complex ω’s. This indicates that such fixed points are not found by simple
continuation in ε. The situation in two dimensions seems to be similar [22].

The major part of the results obtained within other approaches (‘exact’ renormalization
group, Monte Carlo simulations, etc) may be considered as favoring the fluctuation-induced
first-order chiral transitions for n = 2, 3 [23–29]. Such transitions are characterized by
effective critical exponents that are non-universal and depend on the magnet or antiferromagnet
studied. Arguments were presented [30] that the new chiral fixed point found in [19] may be
an artifact produced by rather long RG expansions. For detailed discussion and most recent
results see, e.g. [31, 32].

The purpose of this paper is to investigate the critical behavior of the general O(n)

symmetric theory
SO(n) (φ1, φ2) = S0(φ1, φ2, τ ) + Sint(φ1, φ2, g),

S0(φ1, φ2, τ ) = 1

2

(
2∑

k=1

(∇φk)
2 +

3∑
k=1

τkIk

)
,

Sint(φ1, φ2, g) = 1

8

3∑
k,l=1

IkgklIl = 1

8
IgI

(4)

of two classical fields with n components respectively, with⎛
⎝I1

I2

I3

⎞
⎠ =

⎛
⎝ φ2

1

φ2
2√

2φ1φ2

⎞
⎠ . (5)

g is assumed to be symmetric, gji = gij . Whenever possible we use only gij with i � j . The
model (4) becomes O(n)+O(n) symmetric when τ3 = g13 = g23 = g33 = 0. On the other
hand, setting

τ1 = τ2, τ3 = g13 = g23 = 0, g11 = g22, g12 = g11 − g33 (6)

leads to the O(n)×O(2) model of frustrated spins.
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As a function of n we find 10 FPs in total. To our knowledge the FPs we denote by
RS 2.1b and RS 2.3 are new ones. The FP RS 2.1b is remarkable, since in one-loop order it
coincides with the FP RS 2.1a, which describes two decoupled isotropic systems. RS 2.1b
shows in order ε3/2 a coupling between both systems for general n.

In the following section we give the expression of the β-function and of various anomalous
dimensions, which allow the determination of the critical exponents η, ν and ω and the
cross-over exponents in one-loop order for model (4). In section 3, we consider orthogonal
transformations between the two fields φ1 and φ2. As a consequence there will be discrete FPs
(invariant under this transformation) and lines of FPs. Then we classify the solutions according
to the behavior in the large-n limit. In section 5, the various fixed points are determined and the
corresponding critical exponents are given for finite n. If in some range of n the FP becomes
complex, we determine in order ε the limit nc, where it becomes complex (for positive n only).
Comparison is made with the known models (1)–(3) in section 6. A summary concludes the
paper.

2. The 4 − 2ε expansion

The expression for the critical exponents can be taken from the review article by Brézin
et al [33]. Writing

Sint = 1
4!giα,jβ,kκ,lλφiαφjβφkκφlλ (7)

one obtains

giα,jβ,kκ,lλ = 1

υi,jυk,l

gρi,j ,ρk,l
δαβδκ,λ +

1

υi,kυj,l

gρi,k ,ρj,l
δακδβλ +

1

υi,lυj,k

gρi,l ,ρj,k
δαλδβκ , (8)

υ1,1 = υ2,2 = 1, υ1,2 = υ2,1 =
√

2, ρ1,1 = 1, ρ2,2 = 2,

ρ1,2 = ρ2,1 = 3.
(9)

The six β functions βij ≡ μ∂μgij , where μ is an auxiliar parameter with the critical
dimension 1, can be written in one-loop order

βij = −2εgij + 1
2 (n + 8)gikgkl + 1

2Cij,kl,mngklgmn (10)

with

i, j Cij,kl,mngklgmn

1, 1 −8g2
12 + 2g12g33 + g2

33

1, 2 −6g11g12 − 6g12g22 − 4g13g23 + g11g33 + 4g2
12 + 2g2

13 + g22g33 + 2g2
23 + g2

33

1, 3 −6g12g23 − 3g13g33 + 6g12g13 + 3g23g33

2, 2 −8g2
12 + 2g12g33 + g2

33

2, 3 −6g12g13 − 3g23g33 + 6g12g23 + 3g13g33

3, 3 −2g2
13 − 2g2

23 − 6g2
33 + 2g11g33 + 8g12g33 + 4g13g23 + 2g22g33.

(11)

We have rescaled the couplings by a factor 8π2 as usual.
The FPs g∗ are the solutions of βij (g

∗) = 0. We observe that (4) is symmetric under the
simultaneous interchange of g11 with g22 and g13 with g23. The simultaneous change of signs
of g13 and g23 leaves the solution to (10) invariant.

3
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The stability matrix

ωij,kl = ∂βij (g)/∂gkl|g=g∗ (12)

is easily obtained. The eigenvalues of (12) are the critical exponents ω.
Similarly the critical exponents η are obtained from the eigenvalues γ ∗

� of the symmetric
2 × 2 matrix γ� at g = g∗,

{γ�}11 = 1

16

(
2(n + 2)g2

11 + (n + 2)g2
23 + (n + 1)g2

33 + 2ng2
12 + 4g12g33 + 3(n + 2)g2

13

)
,

{γ�}21 =
√

2(n + 2)

16

(
(g11 + g12 + g33)g13 + (g22 + g12 + g33)g23

)
,

{γ�}22 = 1

16

(
(n + 2)g2

13 + 2(n + 2)g2
22 + 2ng2

12 + 3(n + 2)g2
23 + (n + 1)g2

33 + 4g12g33
)
,

(13)

calculated at the specific FP, with respect to ηi = 2γ ∗
�i

.
The critical behavior of perturbations bilinear in the fields φ is governed by the expression

for 1/ν − 2 given by Brézin et al which as a function of the n components of the fields can be
written as (

1

ν
− 2

)
iα,jβ;kκ,lλ

= d
(1)
i,j,k,lδαβδκλ + d

(2)
i,j,k,lδακδβλ + d

(2)
i,j,l,kδαλδβκ . (14)

Eigenfunctions of this matrix are of three types:

(i) They may be O(n) symmetric corresponding to the variation of the τi . Thus one applies
eigenfunctions of type aklδκλ to (14) and with

d̂(1)
ρi,j ,ρk,l

= υi,jυk,ld
(1)
i,j,k,l , d̂(2)

ρi,j ,ρk,l
= υi,jυk,l

(
d

(2)
i,j,k,l + d

(2)
i,j,l,k

)
(15)

the eigenvalues are those of the 3 × 3 matrix

γτ = nd̂(1) + d̂(2), (16)

which in one-loop order reads

γτ = −1

2

⎛
⎝(n + 2)g11 ng12 + g33 (n + 2)g13

ng12 + g33 (n + 2)g22 (n + 2)g23

(n + 2)g13 (n + 2)g23 2g12 + (n + 1)g33

⎞
⎠

g=g∗

. (17)

(ii) They may be of type ak,lbκ,λ with a and b symmetric in the indices, and bκ,κ = 0. They
yield cross-over exponents which are obtained from the eigenvalues of the 3 × 3 matrix

γcr,s = d̂(2), (18)

which in one-loop order reads

γcr,s = −1

2

⎛
⎝2g11 g33 2g13

g33 2g22 2g23

2g13 2g23 2g12 + g33

⎞
⎠

g=g∗

. (19)

(iii) Finally they may be of type ak,lbκ,λ, but now with both a and b antisymmetric in their
indices. They are obtained from

γcr,a = 2
(
d

(2)
12,12 − d

(2)
12,21

)
, (20)

which in one-loop order reads

γcr,a = −g12 + 1
2g33. (21)

4
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The various γ ’s given here are the anomalous dimensions in terms of the length scale.
The full dimension y is written as

yi = D − D − 2

2
N ± γi (22)

for perturbations homogeneous in φ of order N. For γ ∗
� the minus sign applies, whereas for the

other exponents the plus sign has to be taken. The first two contributions in the last expression
are the bare exponents valid for the trivial fixed point, whereas the last term constitutes the
anomalous contribution. If one singles out a linear combination of the scalar products I as
multiplied by the temperature difference τ from the critical point, then the singular part of the
free energy shows the scaling behavior

Fsing(τ, {μi}) = |τ |DνFsing,±

({
μi

|τ |�i

})
(23)

near criticality, where τ and μi are multiplied by scaling operators. ν obeys yτ = 1/ν and the
gap exponents �i are related to the yi by

�i = yi

yτ

= νyi. (24)

In the special case of operators bilinear in φ the exponents �i are cross-over exponents.

3. Field rotations

One may perform a rotation between the fields φ1 and φ2 in the model (4),(
φ′

1

φ′
2

)
=

(
cos(ϕ) sin(ϕ)

−sin(ϕ) cos(ϕ)

) (
φ1

φ2.

)
. (25)

Performing the rotation (25) yields

⎛
⎝I ′

1

I ′
2

I ′
3

⎞
⎠ = M

⎛
⎝I1

I2

I3

⎞
⎠ , M =

⎛
⎜⎜⎜⎝

1
2 + 1

2 cos(2ϕ) 1
2 − 1

2 cos(2ϕ)

√
1
2 sin(2ϕ)

1
2 − 1

2 cos(2ϕ) 1
2 + 1

2 cos(2ϕ) −
√

1
2 sin(2ϕ)

−
√

1
2 sin(2ϕ)

√
1
2 sin(2ϕ) cos(2ϕ)

⎞
⎟⎟⎟⎠ . (26)

The matrix M is orthogonal and the interaction transforms according to

Sint(φ
′
1, φ

′
2, g

′) = 1
8I

′T g′I ′, g′ = MgMT . (27)

Obviously both sets of couplings describe the same critical behavior. One finds that

a1 = g11 + g22 + 2g12, a2 = g11 + g22 + g33 (28)

are invariant under the rotations, whereas

a31 = g11 − g22, a32 =
√

2(g13 + g23), (29)

a41 = −g11 + 2g12 − g22 + 2g33, a42 = −
√

8(g13 − g23) (30)

transform according to(
a′

31

a′
32

)
=

(
cos(2ϕ) sin(2ϕ)

−sin(2ϕ) cos(2ϕ)

)(
a31

a32

)
(31)

and (
a′

41

a′
42

)
=

(
cos(4ϕ) sin(4ϕ)

−sin(4ϕ) cos(4ϕ)

)(
a41

a42

)
. (32)

5
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For the interactions invariant under O(n)×O(2) the amplitudes a31, a32, a41, a42 have to
vanish. For all other interactions we may choose ϕ. We will choose it so that

a42 = 0, that is g23 = g13. (33)

In the following section we will derive the FPs of (10) with the condition (33), from which all
other fixed points can be obtained by means of the transformations (31) and (32) leaving the
expressions (28) invariant.

4. The classification of the fixed points in the large n limit

4.1. The form of the projectors

In the large-n limit we may neglect the last term in (10). We express g in terms of the
matrix p,

g = 4εp/(n + 8). (34)

We see that at criticality (βij ≡ 0) and in the limit n → ∞ the matrix p becomes idempotent:
p = p2. The only eigenvalues of idempotent matrices are 0 and 1. Thus depending on the
number k of eigenvalues 1 there are four types of symmetric (3 × 3) idempotent matrices p(k)

p
(0)
ij = 0, p

(1)
ij = zizj , p

(2)
ij = δij − zizj , p

(3)
ij = δij ; i, j = 1, 2, 3,

(35)

with the restriction

z2
1 + z2

2 + z2
3 = 1. (36)

Next the solution to (10) in the limit n → ∞ is calculated by considering the first two orders
in 1/(n + 8) to g∗. This yields further conditions on z for the classes p(1,2).

4.2. The class p(0)

This class consists of the trivial FP g∗ = 4εp(0)/(n + 8) = 0 only. The stability matrix

ωij = −(2ε)δij (37)

is diagonal as we can see from (10). All its eigenvalues are negative and the FP is unstable.
This FP is exact and remains invariant under the orthogonal transformations.

4.3. The class p(1)

Here, the ansatz

g∗
ij = 4ε

(n + 8)
zizj +

4ε

(n + 8)2
hij + O

(
1

(n + 8)3

)
(38)

with the symmetric matrix h is put into the β-functions (10). We neglect the terms of higher
order in 1/(n + 8) and obtain

−ε2zizj

n + 8
− ε2hij

(n + 8)2
+

ε2

n + 8

(
zizk +

hik

n + 8

) (
zkzj +

hkj

n + 8

)
+

ε2cij

(n + 8)2
∼= 0, (39)

where

cij ≡ Cij,kl,mnzkzlzmzn. (40)

The equation for the terms of first order in 1/(n + 8) gives the already known condition (36).

6
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From the equation for the terms of second order we obtain

−hij + zi(zkhkj ) + zj (zkhki) + cij = 0. (41)

Two of these six equations fix z, the remaining four can be used to determine h. We multiply
(41) by zi and sum over i

−zihij + zkhkj + zj (zkhkizi) + zicij = 0. (42)

With cj ≡ zicij we obtain

zj (zkhkizi) = −cj (43)

or

zicj − zj ci = 0. (44)

The constants cij = cji in (39) can be calculated with (10) and (11). The constants ci = cij zj

then read

c1 = (
z2

3 − 2z1z2
)(

7z2
1z2 + 3z3

2 + 4z2z
2
3 − 2z1

(
z2

2 + z2
3

))
, (45)

c2 = (
z2

3 − 2z1z2
)(

z1
(
3z2

1 − 2z1z2 + 7z2
2

)
+ 2(2z1 − z2)z

2
3

)
, (46)

c3 = 3z3
(
2z1z2 − z2

3

)(
(z1 − z2)

2 + 2z2
3

)
. (47)

Two of the three equations (44) turn out to be identical. With (36) we obtain the following
conditions on z:(

1 − z2
12

)(
4 − z2

12

)
z12(z1 − z2) = 0,(

1 − z2
12

)(
4 − z2

12

)
z12z

2
3 = 0,

z12 := z1 + z2.

(48)

Thus solutions are given by

z12 = 0,±1,±2,±
√

2, (49)

where the first solutions can be read off immediately from equations (48), whereas the last pair
of solutions follows from z1 − z2 = 0, z3 = 0 and equation (36). This last solution describes
an O(n)×O(2)-invariant interaction. Due to the ansatz (38) a change of the sign of the z’s
does not alter the fixed point. Thus z12 and −z12 yield the same class of fixed points. The
interaction can be written as

S
(1)
int = ε

2(n + 8)
(ziIi )

2 (50)

in this large-n limit. One realizes that the rotation (26) of I can be rewritten as

I ′
1 + I ′

2 = I1 + I2, (51)(I ′
1 − I ′

2√
2I ′

3

)
=

(
cos(2ϕ) sin(2ϕ)

−sin(2ϕ) cos(2ϕ)

) (I1 − I2√
2I3

)
. (52)

Thus z12 in

ziIi = 1
2z12(I1 + I2) + 1

2 (z1 − z2)(I1 − I2) + z3I3 (53)

stays constant, whereas z1 − z2 and z3 vary under rotation with

(z1 − z2)
2 + 2z2

3 = 2 − z2
12. (54)

Thus for z12 
= ±√
2 one obtains a whole continuum of solutions.

7
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The eigenvalues of the stability matrix are determined in appendix A. In leading
order they are independent of z12. Similarly one can determine the other exponents from
equations (13)–(21) and obtain in the limit of large n

ω = {(2ε), 0 (2×),−(2ε) (3×)}, γ ∗
τ = {−(2ε), 0 (2×)},

γ ∗
cr =

{
(2ε)

n

(−1 ± z12

√
2 − z2

12

)
,
(2ε)

n

(
1 − z2

12

)
(2×)

}
,

γ ∗
� =

{
(2ε)2

8n

(
1 ± z12

√
2 − z2

12

)}
.

(55)

Here and in the following exponents appearing several times are indicated by (. . . ×). If
a ± appears in an exponent, then exponents with both signs contribute. The exponent γ ∗

cr,a is
always the last one of γ ∗

cr.

4.4. The class p(2)

Here the ansatz

g∗
ij = 4ε

n + 8
(δij − zizj ) +

4ε

(n + 8)2
hij + O

(
1

(n + 8)3

)
, (56)

with a symmetric matrix h is put into (10). This leads to

−ε2

n + 8
(δij − zizj ) − ε2hij

(n + 8)2
+

ε2

n + 8

(
δik − zizk +

hik

n + 8

)(
δkj − zkzj +

hkj

n + 8

)

+
ε2cij

(n + 8)2
= O

(
1

(n + 8)3

)
, (57)

with

cij := Cij,kl,mn(δkl − zkzl)(δmn − zmzn). (58)

The equation for the first-order terms in 1/(n + 8) gives (36) again. The equation for the
second-order terms is

−hkj zizk + hij − hikzkzj + cij = 0. (59)

With the same arguments which led from (41) to (48) we now deduce conditions on z

corresponding to (48):(
z2

12 + 1
)
z2

12(z1 − z2) = 0, (60)(
z2

12 + 1
)
z12z

2
3 = 0. (61)

Thus solutions are given by

z12 = 0,±i,±
√

2, (62)

where the first two solutions are immediately obvious from equations (60) and the last one
follows from z1 = z2, z3 = 0, and equation (36). This last solution represents an O(n)×O(2)-
invariant model. The interaction can be written as

S
(2)
int = ε

2(n + 8)
(IiIi − (ziIi )

2) (63)

in the large-n limit. Note that IiIi is invariant under rotations (26). Thus the same argument
concerning the invariance of z12 under rotations as for p(1) applies here. Again for z12 
= ±√

2
one obtains a continuous set of models related by the transformation (51)–(54).

8
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The stability matrix ω yields in this limit eigenvalues opposite in sign to those of p(1)

(appendix A). Similarly one determines the other exponents from equations (13)–(21) and
obtains in the limit of large n

ω = {(2ε) (3×), 0 (2×),−(2ε)}, γ ∗
τ = {−(2ε) (2×), 0},

γ ∗
cr =

{
(2ε)

n

(−2 + z2
12

)
,
(2ε)

n

(−1 ±
√

1 + 2z2
12 − z4

12

)
,
(2ε)

n
z2

12

}
,

γ ∗
� =

{
(2ε)2

8n

(
2 ± z12

√
2 − z2

12

)}
.

(64)

4.5. The class p(3)

In the large-n limit one obtains g∗ = 4εp(3)/(n + 8), which yields the exponents in leading
order

ω = {(2ε) (6×)} , γ ∗
τ = {−(2ε) (3×)} ,

γ ∗
cr =

{−3(2ε)

n
,
−(2ε)

n
(2×),

(2ε)

n

}
, γ ∗

� =
{

3(2ε)2

8n
(2×)

}
.

(65)

5. Solutions for finite n

5.1. Fixed points

In order to solve equations (10) for the couplings g∗ for finite n, we observe that the ‘gauge’
condition a42 = g13 − g23 = 0 yields

β11 − β22 = −1

2
(g11 − g22)(4ε − (n + 8)(g11 + g22)) = 0, (66)

β13 − β23 = n + 8

2
(g11 − g22)g13 = 0, (67)

β13 = −1

2
g13(4ε − (n + 8)(g11 + g12 + g33)) = 0. (68)

Thus we have to solve any of the two equations

g13 = 0, g11 = g22 (69)

g13 = 0, 4ε − (n + 8)(g11 + g22) = 0 (70)

g11 = g22, 4ε − (n + 8)(g11 + g12 + g33) = 0 (71)

together with the three equations

β11 = β12 = 0, (72)

β33 = 0. (73)

If g13 = 0, then β33 factors

β33 = −1
2g33(4ε − (n + 2)g33 + 2g11 + 2g22 + 8g12). (74)

9
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Then we distinguish the two cases

g33 = 0, (75)

4ε − (n + 2)g33 + 2g11 + 2g22 + 8g12 = 0. (76)

One obtains the following solutions from (69), (72) and (75):

g11 = g22, g13 = g23 = g33 = 0

RS g11/ε g12/ε a1/ε a2/ε a41/ε z12

0.1 0 0 0 0 0 −
2.1

4

n + 8
0

8

n + 8

8

n + 8
− 8

n + 8
0

1.3
2

n + 4

2

n + 4

8

n + 4

4

n + 4
0 ±√

2

1.2
2n

n2 + 8

8 − 2n

n2 + 8

16

n2 + 8

4n

n2 + 8
−8(n − 2)

n2 + 8
0.

(77)

Equations (69), (72) and (76) yield for g33 
= 0

g11 = g22, g13 = g23 = 0

RS g11/ε g12/ε g33/ε

2.1 2
n+8

2
n+8

4
n+8

1.2 4
n2+8

4
n2+8

4(n−2)

n2+8

3.1 3n2−2n+24+(n−6)
√

n2−24n+48
n3+4n2−24n+144

−n2−6n+72+(n+6)
√

n2−24n+48
n3+4n2−24n+144

4(n2+n−12−3
√

n2−24n+48)

n3+4n2−24n+144

2.2 3n2−2n+24−(n−6)
√

n2−24n+48
n3+4n2−24n+144

−n2−6n+72−(n+6)
√

n2−24n+48
n3+4n2−24n+144

4(n2+n−12+3
√

n2−24n+48)

n3+4n2−24n+144

(78)

RS a1/ε a2/ε a41/ε z12

2.1 8
n+8

8
n+8

8
n+8 0

1.2 16
n2+8

4n
n2+8

8(n−2)

n2+8 0

3.1 4(n2−4n+48+n
√

n2−24n+48)

n3+4n2−24n+144
2(5n2+(n−12)

√
n2−24n+48)

n3+4n2−24n+144 0 −
2.2 4(n2−4n+48−n

√
n2−24n+48)

n3+4n2−24n+144
2(5n2−(n−12)

√
n2−24n+48)

n3+4n2−24n+144 0 ±√
2.

Equations (70), (72) and (73) with g11 
= g22 yield

g13 = g23 = 0,

RS g11,22/ε − 2
n+8 g12/ε g33/ε

1.1 ± 2
n+8 0 0

1.4 ±
√

32(1−n)

(n+8)3
6

n+8 0

2.3 ±
√

−4(3n+22)(n−2)(n+2)(n+4)(n+14)

(n+8)3(n2+4n+20)2
4(n+6)(n+4)

(n+8)(n2+4n+20)

4(n2−36)

(n+8)(n2+4n+20)

(79)

RS a1/ε a2/ε a41/ε z12

1.1 4
n+8

4
n+8 − 4

n+8 ±1

1.4 16
n+8

4
n+8

8
n+8 ±2

2.3 4(3n2+24n+68)

(n+8)(n2+4n+20)

8(n+4)(n−2)

(n+8)(n2+4n+20)

4(3n2+16n−44)

(n+8)(n2+4n+20)
±i.

10
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Equations (71), (72) and (73) yield for g13 
= 0

g11 = g22, g13 = g23

RS g11/ε g12/ε g33/ε (g13/ε)
2

1.1 1
n+8

1
n+8

2
n+8

2
(n+8)2

1.4 4
n+8

4
n+8 − 4

n+8
16(1−n)

(n+8)3

2.3 5n2+24n−4
(n+8)(n2+4n+20)

(n+10)(n+14)

(n+8)(n2+4n+20)

−2(n+2)(n+14)

(n+8)(n2+4n+20)

−2(3n+22)(n−2)(n+2)(n+4)(n+14)

(n+8)3(n2+4n+20)2

(80)

RS a1/ε a2/ε a41/ε z12

1.1 4
n+8

4
n+8

4
n+8 ±1

1.4 16
n+8

4
n+8 − 8

n+8 ±2

2.3 4(3n2+24n+68)

(n+8)(n2+4n+20)

8(n−2)(n+4)

(n+8)(n2+4n+20)
− 4(3n2+16n−44)

(n+8)(n2+4n+20)
±i

We consider the solutions (77)–(80) as representative solutions. They are denoted by RS k.m,
where k indicates that they belong to p(k) in the large-n limit, and m numbers the various
solutions.

There are three types of solutions:

(i) the solutions, which are invariant under O(n)×O(2). There is one solution for each k,
RS 0.1, 1.3, 2.2, and 3.1;

(ii) solutions for which a31 = a32 = 0, RS 1.2, 2.1;

(iii) solutions for which a’s can be different from 0, RS 1.1, 1.4, and 2.3. The solutions can be
seen in both (79) and (80). They are obtained from one another by a rotation by ϕ = π/4.

All solutions with the exception of the trivial fixed point RS 0.1 have an exponent ω = 2ε

independent of n in one-loop order, since βij = −2εgij + term bilinear in the g’s and thus
∂βij /∂gkl|g=g∗g∗

kl = 2εg∗
ij .

For the solutions (i) of symmetry O(n)×O(2) equation (6) holds. Then equations (13),
(17) and (19) yield the eigenvalues

γ ∗
� =

{
n + 1

4
g∗2

11 +
3(n − 1)

16
g∗2

33 − n − 1

4
g∗

11g
∗
33 (2×)

}
,

γ ∗
τ =

{
−(n + 1)g∗

11 +
n − 1

2
g∗

33,−g∗
11 − n − 1

2
g∗

33 (2×)

}
,

γ ∗
cr,s =

{
−g∗

11 − 1

2
g∗

33,−g∗
11 +

1

2
g∗

33 (2×)

}
.

(81)

All three sets of exponents contain two degenerate exponents. The first exponent γ ∗
τ yields ν,

the two other ones belong to perturbations of types φ2
1 − φ2

2 and φ1φ2. Thus they yield cross-
over exponents. The first cross-over exponent γ ∗

cr belongs to operators bκλ(φ1κφ1λ + φ2κφ2λ),
the two equal exponents to bκλ(φ1κφ1λ − φ2κφ2λ) and bκλφ1κφ2λ with symmetric bκλ. The
degeneracies are due to the O(2) invariance.

All other solutions to types (ii) and (iii) can be obtained by means of field rotations as
described in section 3. These solutions yield one exponent ω = 0 since the field rotations
create lines of fixed points. This exponent is not a true scaling exponent, but a redundant one,
since the perturbation is obtained from an infinitesimal rotation between φ1 and φ2.

11
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5.2. Critical exponents

In the following, we give the critical exponents of the various fixed points.

RS 0.1. This is the trivial (interaction free) fixed point. All anomalous exponents γ ∗ vanish

γ ∗
� = {0 (2×)}, γ ∗

τ = {0 (3×)}, γ ∗
cr = {0 (4×)}, ω = {−(2ε) (6×)}. (82)

RS 1.1. Representatives of these solutions are given in (79) and (80). The critical exponents
are given by

γ ∗
τ =

{
− (n + 2)(2ε)

n + 8
, 0 (2×)

}
, γ ∗

cr =
{
−2(2ε)

n + 8
, 0 (3×)

}
,

γ ∗
� =

{
(n + 2)(2ε)2

4(n + 8)2
, 0

}
, ω =

{
(2ε),−(2ε) (2×),− (n + 6)(2ε)

n + 8
,−6(2ε)

n + 8
, 0

}
.

(83)

RS 1.2. Representatives are given in (77) and (78). The critical exponents are

γ ∗
� =

{
n(n2 − 3n + 8)(2ε)2

8(n2 + 8)2
(2×)

}
, γ ∗

τ =
{
−3n(2ε)

n2 + 8
,
(1 − n)n(2ε)

n2 + 8
,
(n − 4)(2ε)

n2 + 8

}
,

γ ∗
cr =

{
− n(2ε)

n2 + 8
(2×),

(n − 4)(2ε)

n2 + 8
(2×)

}
,

ω =
{

0, (2ε),
8(n − 1)(2ε)

n2 + 8
,
(4 − n)(2 + n)(2ε)

n2 + 8
,

(4 − n)(n − 2)(2ε)

n2 + 8
,
(2 − n)(4 + n)(2ε)

n2 + 8

}
.

(84)

In the representation (77) g13 = g23 = 0 holds and the γτ matrix (17) becomes a block matrix
and has the eigenvalues γ ∗

τ = {
γ ∗

τ1
, γ ∗

τ2
, γ ∗

τ3

}
which in the case of g∗

11 = g∗
22 belong to the

eigenvectors (1, 1, 0), (1,−1, 0) and (0, 0, 1) respectively in our convention. Thus the first
entry represents an ordinary critical exponent when τ1 = τ2, the third entry is the critical
exponent of τ3, and the second entry as well as the exponents γ ∗

cr are related to the crossover.

RS 1.3. This solution is not only invariant under O(n)×O(2), but even under O(2n). g∗ is
given in (77). Its critical exponents are

γ ∗
� =

{
(2n + 2)(2ε)2

4(2n + 8)2
(2×)

}
, γ ∗

τ =
{
−2

(2n + 2)(2ε)

2n + 8
,− 2(2ε)

2n + 8
(2×)

}
,

γ ∗
cr =

{
− 2(2ε)

2n + 8
(4×)

}
, ω =

{
(2ε),

8(2ε)

2n + 8
(2×),

(4 − 2n)(2ε)

2n + 8
(3×)

}
.

(85)

The last two exponents of γ ∗
τ belong to cross-over exponents (discussion after (81)). These

exponents and all exponents γ ∗
cr are equal.

RS 1.4. Its representative couplings are given in (79) and (80). In one-loop order one obtains
the exponents

12
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γ ∗
� =

{
(n2 + 37n + 16)(2ε)2

8(n + 8)3
± (n + 2)

√
2(1 − n)(2ε)2

2(n + 8)5/2

}
,

γ ∗
τ =

{
− (2 + n)(2ε)

2(n + 8)
±

√
n3 + 48n2 + 32(2ε)

2(n + 8)3/2
,−3(2ε)

n + 8

}
,

γ ∗
cr =

{
− (2ε)

n + 8
± 2

√
2(1 − n)(2ε)

(n + 8)3/2
,−3(2ε)

n + 8
(2×)

}
,

ω =
{

0, (2ε),
(6 − n)(2ε)

n + 8
,
(10 − n)(2ε)

n + 8
,− (n + 2)(2ε)

2(n + 8)
±

√
n2 − 188n + 196(2ε)

2(n + 8)

}
.

(86)

We consider the coupling in two-loop order, since it yields in order ε the region in which
the couplings are real. Using the representation (79) the couplings may be written as

g∗
11,22 = u(1)ε + u(2)ε2 ± V + O(ε3), (87)

V = v(1)
√

wε +
v(2)

√
w

ε2, (88)

with

u(1) = 2

n + 8
,

u(2) = −2(n3 + 24n2 − 27n − 160)

(n + 8)4
,

v(1) = 4

(n + 8)2
,

v(2) = n4 + 80n3 − 2004n2 − 880n + 2560

2(n + 8)4
,

w = 2(1 − n)(8 + n),

g∗
12 = 6

n + 8
ε +

−n3 − 66n2 + 450n + 832

(n + 8)4
ε2,

g∗
13 = g∗

23 = g∗
33 = 0.

(89)

Now V can be rewritten as

V = v(1)ε

√
w +

2v(2)

v(1)
ε. (90)

Thus with w(n0) = 0 the limit of real couplings is given by

nc = n0 − 2v(2)(n0)

v(1)(n0)w′(n0)
ε, (91)

which in our case yields nc = 1 − (2ε)/48 + O(2ε)2.

RS 2.1. Representatives in one-loop order are given in (77) and (78). Two of the exponents ω

equal 0 for any n in one-loop order; one is due to the invariance under rotations between the
fields φ. The other one indicates that there may branch off a second line of FPs. Indeed one
finds besides the FP of two decoupled systems g∗

11 = g∗
22, g

∗
12 = g∗

33 = g∗
13 = g∗

23 = 0 (which
we denote RS 2.1a) another solution with g∗

11 = g∗
22, g

∗
12, g

∗
33 = O(ε2), g∗

13 = g∗
23 = O(ε3/2),

which we denote RS 2.1b. Both types of FPs agree in one-loop order, but differ in the next

13
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order. Note that the first FP has a31 = a32 = 0, whereas the second does not show this
symmetry. In the following we give the FPs and critical exponents in two-loop order (for γ ∗

�

in three-loop order).
First the general scheme to obtain the FPs beyond first order is explained. Let the

β-function up to two-loop order read

βi = −(2ε)gi +
∑
pq

kipqgpgq +
∑
pqr

lipgrgpgqgr + · · · , (92)

where the indices i ,p ,q ,r replace the double indices ij and expand the contributions in one-loop
order

kipq = k0
ipq + εk1

ipq + · · · (93)

and similarly the higher-loop orders. With

gi = εg1,i + ε2g2,i + · · · (94)

one obtains from βi(g
∗) order εr , r > 2 the equation

Bijg
∗
r−1,j = r.h.s (95)

Bij := −2δij + 2
∑

p

k0
ipqg

∗
1,p, (96)

where the rhs of equation (95) contains only g∗
r ′,q with r ′ < r − 1. The matrix B is the matrix

ω in one-loop order. If none of the eigenvalues of this matrix vanishes, then equation (95)
can be used to calculate g∗

r in increasing order r. If due to the rotation invariance one of the
eigenvalues vanishes, then the condition (33) reduces the number of independent couplings by
1 and eliminates the vanishing eigenvalue. If, however, a second eigenvalue vanishes, then the
calculation has to be modified. For this RS 2.1 we assume g22 = g11 and expand g11, g12, g33

as in equation (94), but denote gu = g13 = g23 and expand

gu = ε3/2g1,u + ε5/2g2,u + · · · . (97)

From now on the indices i, p, q, . . . stand only for the double indices 11, 12, 33, but not
for 13.

Order ε2 of βi(g
∗) = 0 is fulfilled by the solutions of RS 1.2

g∗
1,11 = 4

n + 8
, g∗

1,12 = g∗
1,33 = 0. (98)

Order ε5/2 of βu = 0 yields

Buug
∗
1,u = 0. (99)

Since for the FP RS 2.1 Buu = 0, this is automatically fulfilled. Next βi(g
∗) = 0 in order ε3

yields ∑
q

Biqg
∗
2,q + k0

iuug
∗2
1,u +

∑
pq

k1
ipqg

∗
1,pg∗

1,q +
∑
pqr

lipqrg
∗
1,pg∗

1,qg
∗
1,r = 0, (100)

from which one calculates g∗
2,i . Note that it depends on the yet unknown g∗2

1,u. Now β(g∗) = 0
in order ε7/2 yields

Buug
∗
2,u + Cug

∗
1,u = 0, Cu := 2

∑
p

k0
upug

∗
2,p + 2

∑
p

k1
upug

∗
1,p + 3

∑
p,q

l0
upqug

∗
1,pg∗

1,q .

(101)
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Since Buu = 0, we have either g∗
1,u = 0 (RS 2.1a) or Cu = 0, which constitutes a quadratic

equation in g∗
1,u yielding the FP (RS 2.1b).

Higher orders in ε are determined uniquely. Order εr , r > 3 of βi = 0 yields∑
q

Biqg
∗
r−1,q + 2k0

1uug
∗
1,ug

∗
r−2,u = rhs, (102)

where the right-hand side of the equation contains g∗
r ′,q with r ′ < r−1 and g∗

r ′,u with r ′ < r−2.
Order εr+1/2 of βu = 0 yields

Buug
∗
r−1,u + Cug

∗
r−2,u + 2

∑
p

k0
upug

∗
1,ug

∗
r−1,p = rhs. (103)

The rhs contains g∗
r ′,q with r ′ < r − 1 and g∗

r ′,u with r ′ < r − 2. In all cases Buu = 0. For
RS 2.1a one has g∗

1,u = 0 and Cu 
= 0, which allows a unique determination of g∗
r−2,u. Since

each term of the rhs contains at least one factor gr ′,u, one obtains gr−2,u = 0. For RS 2.1b both
Bu = Cu = 0 vanish. However the sum

∑
p k0

upug
∗
1,ug

∗
r−1,p depends via g∗

r−1,p on g∗
r−2,u. As

a result one obtains from this equation g∗
r−2,u.

RS 2.1a

g∗
11 = g∗

22 = 4

n + 8
ε − 4(n2 − 2n − 20)

(n + 8)3
ε2,

g∗
12 = g∗

33 = g∗
13 = g∗

23 = 0.

(104)

This solution describes two independent O(n) models:

γ ∗
� =

{
(n + 2)

4(n + 8)2
(2ε)2 − (n + 2)(n2 − 56n − 272)

16(n + 8)4
(2ε)3 (2×)

}
,

γ ∗
τ =

{
− n + 2

2(n + 8)2
(2ε)2,−n + 2

n + 8
(2ε) − (n + 2)(13n + 44)

2(n + 8)3
(2ε)2 (2×)

}
,

γ ∗
cr =

{
− 2

n + 8
(2ε) +

(n + 4)(n − 22)

2(n + 8)3
(2ε)2 (2×),− n + 2

2(n + 8)2
(2ε)2 (2×)

}
,

ω =
{
(2ε) − 3(3n + 14)

(n + 8)2
(2ε)2 (2×),

n − 4

n + 8
(2ε) +

(n + 2)(13n + 44)

(n + 8)3
(2ε)2,

− n + 4

n + 8
(2ε) − (n + 4)(n − 22)

(n + 8)3
(2ε)2,

n + 2

2(n + 8)2
(2ε)2, 0

}
.

(105)

RS 2.1b. The second FP to RS 2.1 is given by

g∗
11 = g∗

22 = 4

n + 8
ε − 9n3 + 98n2 − 400n − 2272

2(n + 8)3(n + 14)
ε2,

g∗
13 = g∗

23 = ±
√

2(n + 4)(n + 2)(n − 4)

(n + 8)2
√

n + 14
ε3/2,

g∗
12 = − n + 2

2(n + 8)(n + 14)
ε2,

g∗
33 = (n + 2)(n − 4)

(n + 8)2(n + 14)
ε2.

(106)
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In the limit D = 4 it is real for n � 4. Its critical exponents are

γ ∗
� =

{
(n + 2)

4(n + 8)2
(2ε)2 ± (n + 2)

√
2(n − 4)(n + 2)(n + 4)

16(n + 8)3
√

n + 14
(2ε)5/2

− (n + 2)(n2 − 56n − 272)

16(n + 8)4
(2ε)3

}
,

γ ∗
τ =

{
− n + 2

(n + 8)
(2ε) − (n + 2)(29n2 + 470n + 1256)

4(n + 14)(n + 8)3
(2ε)2,

− n + 2

n + 8
(2ε) − (n + 2)(23n2 + 434n + 1208)

4(n + 8)3(n + 14)
(2ε)2,

− 3(n + 2)(n2 + 10n + 64)

4(n + 8)3(n + 14)
(2ε)2

}
,

γ ∗
cr =

{
− 2

n + 8
(2ε) +

n3 − 12n2 − 660n − 2416

4(n + 8)3(n + 14)
(2ε)2,

− 2

n + 8
(2ε) +

3n3 − 4n2 − 700n − 2512

4(n + 8)3(n + 14)
(2ε)2,

− (n + 2)(n + 6)(n + 32)

4(n + 8)3(n + 14)
(2ε)2,− (n + 2)(n + 26)

4(n + 8)2(n + 14)
(2ε)2

}
,

ω =
{
(2ε) − 3(3n + 14)

(n + 8)2
(2ε)2 (2×),− n + 2

(n + 8)2
(2ε)2, 0,

n − 4

n + 8
(2ε)

+
(n + 2)(15n3 + 242n2 + 656n + 32)

n(n + 8)3(n + 14)
(2ε)2,

− n + 4

n + 8
(2ε) − 3n4 + 12n3 − 332n2 − 1252n + 64

n(n + 8)3(n + 14)
(2ε)2

}
.

(107)

RS 2.3. The representatives of this fixed point are given in (79) and (80). Its critical exponents
are

γ ∗
� =

{
(2n6 + 37n5 + 348n4 + 2360n3 + 9376n2 + 13904n − 9152)(2ε)2

8(n + 8)3(n2 + 4n + 20)2

± (n + 2)
√−(3n + 22)(n − 2)(n + 2)(n + 4)(n + 14)(2ε)2

8(n + 8)5/2(n2 + 4n + 20)

}
,

γ ∗
τ =

{
− (2ε)(n − 1)(n − 2)(n + 6)

(n + 8)(n2 + 4n + 20)
,− (n + 2)(2ε)

2(n + 8)

± (2ε)
√

n7 + 32n6 + 512n5 + 3792n4 + 10064n3 − 3548n2 − 21376n + 61184

2(n + 8)3/2(n2 + 4n + 20)

}
,

γ ∗
cr =

{
− (2ε)

n + 8
±

√
−2(n5 + 34n4 + 312n3 + 752n2 − 1776n − 7648)(2ε)

(n + 8)3/2(n2 + 4n + 20)
,

− (n + 6)(3n + 2)(2ε)

(n + 8)(n2 + 4n + 20)
,− (n + 6)(n + 14)(2ε)

(n + 8)(n2 + 4n + 20)

}
,

ω =
{

0, (2ε),
(2ε)(n3 + 10n2 − 4n − 232)

(n + 8)(n2 + 4n + 20)
,

(2ε)λ′

2(n + 8)(n2 + 4n + 20)

}
,

(108)
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where λ′ is solution of the equation

λ′3 + 16(n2 + 4n + 20)λ′2 − 4(n + 4)(n5 − 18n4 − 392n3 − 1648n2 − 496n + 8928)λ′

− 16(3n + 22)(n − 2)(n + 6)(n − 6)(n + 4)(n + 2)(n + 14)2 = 0. (109)

In an expansion in 1/(n + 8) one obtains the ω’s

(2ε)

(
− 6

n + 8
− 296

(n + 8)2
− 11 272

(n + 8)3
+ O

(
1

(n + 8)4

))

(2ε)

(
1 − 20

n + 8
− 78

(n + 8)2
+

906

(n + 8)3
+ O

(
1

(n + 8)4

))
,

(2ε)

(
−1 +

18

n + 8
+

374

(n + 8)2
+

10 366

(n + 8)3
+ O

(
1

(n + 8)4

))
.

(110)

Similarly as for RS 1.4 we consider the coupling in two-loop order, since it yields in order
ε the region in which the couplings are real. Using the representation (79) the couplings may
be written in the form (87) and (88) with

u(1) = 2

n + 8
,

u(2) = −2(n7 + 21n6 + 249n5 + 1564n4 + 2312n3 − 13 808n2 − 53 104n − 55 360)

(n2 + 4n + 20)2(n + 8)4
,

v(1) = 2

(n + 8)2(n2 + 4n + 20)
,

v(2) =
−2(n + 2)(n + 4)

(
3n11+13n10−2301n9−41 840n8−134 712n7+2573 392n6+26 618 112n5

+82 530 752n4−6879 104n3−368 123 392n2−274 477 824n−126 516 224

)
(n + 14)(n + 8)4(n2 + 4n + 20)3

,

w = −(3n + 22)(n − 2)(n + 2)(n + 4)(n + 8)(n + 14),

g∗
12 = 4(n + 4)(n + 6)

(n + 8)(n2 + 4n + 20)
ε +

2
(

n10−21n9−1596n8−24 396n7−124 064n6+251 792n5

+5029 824n4+19 095 232n3+27 139 840n2+6788 096n−8542 208

)
(n + 14)(n + 8)4(n2 + 4n + 20)3

ε2,

g∗
33 = 4(n2 − 36)

(n + 8)(n2 + 4n + 20)
ε −

4
(

n10+30n9−99n8−13 222n7−189 636n6−1087 512n5

−1638 768n4+8148 960n3+31 543 872n2+18 656 640n−30 614 016

)
(n + 14)(n + 8)4(n2 + 4n + 20)3

ε2,

g∗
13 = g∗

23 = 0.

(111)

From (90) and (91) we obtain nc = 2 − (2ε)/140 + O(2ε)2.

RS 2.2 and 3.1. These two fixed points are solutions of one and the same quadratic equation.
Both fixed points are O(n)×O(2) invariant. In two-loop order the solutions g∗ can be written
as

g∗
ij = u

(1)
ij ε + u

(2)
ij ε2 + sVij ,

Vij = v
(1)
ij

√
wε +

v
(2)
ij√
w

ε2,

g∗
11 = g∗

22, g∗
13 = g∗

23 = 0,

u
(1)
11 = 3n2 − 2n + 24

N
, v

(1)
11 = n − 6

N
,

u
(1)
12 = − (n + 12)(n − 6)

N
, v

(1)
12 = n + 6

N
,

17



J. Phys. A: Math. Theor. 42 (2009) 095003 Y M Pis’mak et al

u
(1)
33 = 4(n − 3)(n − 4)

N
, v

(1)
33 = −12

N
,

N = n3 + 4n2 − 24n + 144,

w = n2 − 24n + 48, (112)

where s = +1 corresponds to RS 3.1 called chiral FP, and s = −1 to RS 2.2 called antichiral.
Close to D = 4 they are real only for n � 22 and n � 2. The critical exponents read

γ ∗
� =

{
(5n5 − 3n4 − 16n3 − 656n2 + 3072n − 1152 + s(n − 3)(n + 4)w3/2)(2ε)2

16N2
(2×)

}
,

γ ∗
τ =

{
− (n(48 + n + n2) + s(n − 3)(4 + n)

√
w)(2ε)

2N
,

(−2n3 − 3n2 + 28n − 48 + 5sn
√

w)(2ε)

2N
(2×)

}
.

(113)

The exponent γ ∗
τ1

determines ν, whereas the two degenerate ones yield cross-over exponents.
The other cross-over exponents are obtained from

γ ∗
cr =

{
(−5n2 − s(n − 12)

√
w)(2ε)

2N
,
(−n2 + 4n − 48 − sn

√
w)(2ε)

2N
(2×),

(3n2 + 8n − 96 − s(n + 12)
√

w)(2ε)

2N

}
.

(114)

The six exponents ω are

ω =
{

(n + 4)
(
(n + 4)(n − 3) − 3s

√
w

)
(2ε)

N
(2×), (115)

(n3 + 14n2 + 56n − 96 + s(n + 8)(n − 6)
√

w)(2ε)

2N
(2×),

(−3(n2 − 24n + 48) + s(n + 4)(n − 3)
√

w)(2ε)

N
, (2ε)

}
.

(116)

In two-loop order one can write

u
(2)
11 = 1

N3
(−3n8 + 10n7 − 432n6 + 1710n5 + 7480n4

+ 20 976n3 + 3456n2 − 411 264n + 456 192),

u
(2)
12 = 1

N3
(n8 + 20n7 − 286n6 − 3550n5 − 11 960n4

+ 32 208n3 + 165 888n2 + 148 608n − 290 304),

u
(2)
33 = −2(n − 3)(n + 4)

N3
(2n6 + 3n5 + 94n4 − 2688n3

− 5904n2 − 20 736n + 31 104),

v
(2)
ij = Fijw

N3
+

v
(1)
ij L

N2
,

F11 = −n7 + 50n6 + 552n5 + 11 726n4 + 230 912n3 + 5022 864n2

+ 109 907 904n − 910 069 632,

F12 = −n7 + 4n6 + 658n5 + 19 546n4 + 416 192n3 + 8896 560n2

+ 193 441 728n + 909 986 688,

18
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F33 = 46n6 − 106n5 − 7820n4 − 185 280n3 − 3873 696n2

− 83 533 824n − 1820 056 320,

L = 11 520 000(287n − 632). (117)

As a result one obtains

nc = n0 − 2L(n0)

N2(n0)w′(n0)
ε (118)

which yields nc = 12 ± 4
√

6 − (12 ± 14
√

6/3)(2ε) + O(2ε)2 in agreement with [12].3

The FP (112) is stable for large n, where the sign s in front of the root
√

w is chosen
positive. The stability of this FP in three dimensions is discussed on the basis of various
calculation schemes in section 11.5.3 of [4], see also [16–21, 30–32].

The large-n expansion of critical exponents for the FP (112) was performed in [12, 34].
We mention the results for the exponents γ ∗

� and γ ∗
τ in arbitrary dimension D and in the first

order of 1/n

η = 6�(D − 2) sin
(

Dπ
2

)
π�(D/2 − 2)�(1 + D/2)n

(119)

1/ν = D − 2 +
2(2 − D)(1 − D)η

4 − D
, 1/ν2 = D − 2 +

2(2 − D)(3 − 2D)η

3(4 − D)
. (120)

The exponents η and ν were already given in [12], the exponent ν2 in [34], where 1/ν2 = 2 +
γ ∗

τ,2. It yields a cross-over exponent � = ν/ν2, compare equations (23) and (24).

5.3. Stability in 3.99 dimensions

In this subsection a number of criteria for stability of the fixed points are summarized. Since
the calculations are done in first order and in some cases in second order in ε, they apply only
to dimensions close below 4.

In many cases one can easily read of the sign of the ω’s from the expressions given above.
In a number of cases it is not so easy. For these cases (the last two of RS 1.4, the last four of
RS 2.3 and all of RS 2.2 and RS 3.1) we show in table 1 the regions of n where ω is positive,
negative or even complex. Table 2 gives the number of ω’s with negative real part for the
various FPs as function of n. Only the first order in ε is taken into account with the exception
of that ω in RS 2.1a/b which is identical to zero in first order and different from zero in second
order due to the splitting of the fixed points.

In table 3 we show the regions of stable couplings g. We call couplings stable if the
interaction Sint (or its real part) is positive for any φ2

1 + φ2
2 = 1. If Sint is positive for some

directions (φ1, φ2) but zero for special directions, then it is indicated as semistable (is). If it
vanishes in all directions (RS 0.1), it is denoted by i. Otherwise the notation u for unstable is
used.

The stability is determined for representations with g13 = g23 = 0. In one-loop order
there is such a representation for all fixed points in (77)–(79). For g11 = g22 one obtains

g11
(
φ2

1

)2
+ g22

(
φ2

2

)2
+ 2g12φ

2
1φ

2
2 + 2g33(φ1φ2)

2 = ((
φ2

1

)2
+

(
φ2

2)
2)(g11 + q(g12 + q ′g33))

with 2φ2
1φ

2
2 = q

((
φ2

1

)2
+

(
φ2

2

)2)
, 0 � q � 1 since

(
φ2

1 − φ2
2

)2 � 0, and (φ1φ2)
2 = q ′φ2

1φ
2
2 ,

0 � q ′ � 1. Thus, the conditions for stability are

g11 > 0, g11 + g12 > 0, g11 + g12 + g33 > 0.

3 Equation (4.5) in [9] is misprinted. The correct result is found in (3.10) of [12].
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Table 1. Regions of n where ω is either positive (
+→), negative (

−→), complex with positive real part (
+i→) or complex

with negative real part (
−i→). It is not shown if ω = 0 only at a discrete value of n.

RS Mult. From
sign→ down to

1.4 1 ∞ −→ 186.95
−i→ 1.05

−→ 1
+→ −8

−→ −∞
1 ∞ −→ 186.95

−i→ 1.05
−→ −8

+→ −∞

2.3 1 ∞ +→ 4.19
−→ −8

+→ −∞
1 ∞ +→ 6

−→ −8
+→ −∞

1 ∞ −→ 55.54
−i→ 2.02

−→ −2
+→ −2.17

+i→ −4
−→ −8

+→ −∞
1 ∞ −→ 55.54

−i→ 2.02
−→ 2

+→ −2.17
+i→ −4

+→ −6
−→ −7.33

+→ −8
−→ −∞

2.2 2 ∞ +→ 21.80
+i→ 3

−i→ 2.20
−→ 2

+→ −4
−→ −8.68

+→ −∞
2 ∞ +→ 21.80

+i→ 2.20
+→ −7.33

−→ −8.68
+→ −∞

2 ∞ −→ 21.80
+i→ 2.20

+→ 2
−→ −8.68

+→ −∞

3.1 2 ∞ +→ 21.80
+i→ 3

−i→ 2.20
−→ −4

+→ −∞
2 ∞ +→ 21.80

+i→ 2.20
+→ 2

−→ −∞
2 ∞ +→ 21.80

+i→ 2.20
−→ −∞

Table 2. Number of ω’s with negative real part given as function of n.

RS From
#neg.ωs→ down to

0.1 ∞ 6→ −∞
1.1 ∞ 4→ −6

3→ −∞
1.2 ∞ 3→ 4

1→ 1
2→ −2

3→ −4
4→ −∞

1.3 ∞ 3→ 2
0→ −4

5→ −∞
1.4 ∞ 4→ 10

3→ 6
2→ 1

1→ −8
3→ −∞

2.1a ∞ 1→ 4
2→ −2

3→ −4
2→ −∞

2.1b ∞ 2→ 4
3→ −2

2→ −4
1→ −∞

2.3 ∞ 2→ 6
3→ 4.19

4→ 2
3→ −2

2→ −4
3→ 6

4→ −7.33
3→ −8

1→ −∞
2.2 ∞ 2→ 21.80

0→ 3
2→ −4

4→ −7.33
6→ −8.68

0→ −∞
3.1 ∞ 0→ 3

2→ 2.20
4→ 2

6→ −4
4→ −∞

If g11 
= g22, one may set φ2
1 = wφ′2

1 and φ2
2 = φ′2

2

/
w with w = 4

√
g22/g11. Then g11 and g22

are replaced by
√

g11g22. In that case the conditions of stability read

g11 > 0, g22 > 0,
√

g11g22 + g12 > 0,
√

g11g22 + g12 + g33 > 0

If couplings are complex, they have to be replaced by their real parts.
The distinction between stable and unstable no longer applies for negative even n = −2r

if the fields are expressed by r pairs of anticommuting (Grassmannian) components instead,
whose integration is not subject to convergency conditions as in the case of real components.
(The integral over functions of scalar products of vectors with L real components and r pairs of
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Table 3. Regions of stable, unstable and indifferent φ4 interactions. Notations: i indifferent, s
stable, u unstable and c complex couplings. The stability of RS 2.1b is determined in one-loop
order, the regions of real and complex couplings in two-loop order.

RS From
stable/unstable/indifferent/complexcouplings→ down to

0.1 ∞ i→ −∞
1.1 ∞ is→ −8

u→ −∞
1.2 ∞ s→ 0

u→ −∞
1.3 ∞ s→ −4

u→ −∞
1.4 ∞ sc→ 1

s→ 0
u→ −8

uc→ −∞
2.1a ∞ s→ −8

u→ −∞
2.1b ∞ s→ 4

sc→ −2
s→ −4

sc→ −8
uc→ −14

u→ −∞
2.3 ∞ sc→ 2

s→ 1
u→ −2

uc→ −4
u→ −6

s→ −7.33
sc→ −8

u→ −14
uc→ −∞

2.2 ∞ s→ 21.80
sc→ 2.20

s→ −8.68
u→ −∞

3.1 ∞ s→ 21.80
sc→ 2.20

s→ 1
u→ −∞

anticommuting variables depends only on L−2r [37–39]. The scalar product has the property
that it is invariant under unitary orthosymplectic transformations, which in the case of r = 0
reduces to orthogonal transformations.)

6. The well-known subcases

Here we review the FPs of our model (4) which also contain the actions (1)–(3). While the
trivial Gaussian FP is unstable in all models, their stable FPs, apart from the stable FP of (3),
are found unstable in the general model (4).

The nontrivial n-Heisenberg FP of the simple φ4 model (1) is stable and corresponds to
RS 1.1 if the second field is neglected. The quantities (83) reduce to

γ ∗
� = (n + 2)(2ε)2

4(n + 8)2
, γ ∗

τ = − (n + 2)(2ε)

n + 8
, γ ∗

cr = −2(2ε)

n + 8
, ω = (2ε). (121)

The models (2) and (3) are special cases of model (4). Since the number of independent
couplings τ and g is less, the number of exponents (γ ∗

�, γ ∗
τ , ω) reduces to (2,2,3) for model

(2) and to (1,1,2) for model (3). Those exponents γ ∗
τ of (4), which are no longer γ ∗

τ s of (2)
and (3) belong now to the exponents γ ∗

cr.
The O(n)+O(n) model (2) with 3g11 = g1, 3g22 = g2, 6g12 = g3, g13 = 0, g23 = 0,

g33 = 0 has six nontrivial FPs. Three of them are decoupled (g∗
3 = 0) and therefore

represent tetracritical rather than bicritical behavior [1]: the n-Heisenberg–Gaussian FP with
g∗

1 = 6(2ε)/(n + 8) and g∗
2 = 0, the Gaussian–n-Heisenberg FP with g∗

2 = 6(2ε)/(n + 8) and
g∗

1 = 0 and the n-Heisenberg–n-Heisenberg FP with g∗
1 = g∗

2 = 6(2ε)/(n + 8). The critical
exponents of the n-Heisenberg–Gaussian FP RS 1.1 in (79) are

γ ∗
� =

{
(n + 2)(2ε)2

4(n + 8)2
, 0

}
, γ ∗

τ =
{
− (n + 2)(2ε)

n + 8
, 0

}
,

ω =
{
(2ε),−(2ε),−6(2ε)

n + 8

}
,

(122)
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and the decoupled n-Heisenberg–n-Heisenberg FP RS 2.1 in (77) has

γ ∗
� =

{
(n + 2)(2ε)2

4(n + 8)2
(2×)

}
, γ ∗

τ =
{
− (n + 2)(2ε)

n + 8
(2×)

}
,

ω =
{
(2ε) (2×),

(n − 4)(2ε)

n + 8

}
.

(123)

The latter FP is clearly stable for n > 4.
The three remaining FPs have a nonvanishing g∗

3 and therefore represent bicritical
behavior. The first FP is the isotropic 2n-Heisenberg FP [35, 36] RS 1.3 in (77) with

γ ∗
� =

{
(2n + 2)(2ε)2

4(2n + 8)2

}
, γ ∗

τ =
{
− (2n + 2)(2ε)

2n + 8
,− 2(2ε)

2n + 8

}
,

ω =
{
(2ε),

8(2ε)

2n + 8
,− (2n − 4)(2ε)

2n + 8

}
.

(124)

This FP is stable for n < 2. The first γ ∗
τ ∼ O(ε) is the true critical exponent for τ , the second

γ ∗
τ ∼ O(ε/n) yields the cross-over exponent.

The second FP is the so-called biconical FP RS 1.2 in (77). Its critical exponents are

γ ∗
� =

{
n(n2 − 3n + 8)(2ε)2

8(n2 + 8)2
(2×)

}
, γ ∗

τ =
{

(1 − n)n(2ε)

n2 + 8
,−3n(2ε)

n2 + 8

}
,

ω =
{
(2ε),

8(n − 1)(2ε)

8 + n2
,
(4 − n)(n − 2)(2ε)

8 + n2

}
.

(125)

The biconical FP is stable for n = 3 in our approximation.
The last FP is given by RS 1.4 in (79) and is complex for n > 1. Its critical exponents are

given by γ ∗
φ1,2, γ

∗
τ1,2 and ω2,5,6 of (86). This FP coincides with the biconical FP for n = 1.

The frustrated spin model (3) is invariant under O(n)×O(2). It is obtained by
τ2 = τ1, g11 = g22 = u/3, g12 = u/3 − v/6, g33 = v/6, g13 = g23 = 0. It has four
FPs: the trivial Gaussian FP RS 0.1, the isotropic 2n-Heisenberg FP RS 1.3, and the fixed point
RS 2.2 and RS 3.1. γ ∗

� is that of RS 2.2 and 3.1. γτ is γ ∗
τ1

of (113), the other γτi
and the γcr of

(113) yield the cross-over exponents, and ω equals ω5,6 of (115).
The FPs 2.2 and 3.1 are complex for 2.2 < n < 21.8 close to D = 4. This region

decreases with decreasing D [9, 17]. The question of the range of stability in D = 3 is under
debate [4, 16–21, 30–32].

7. Summary and conclusion

We considered in detail the O(n)-model (4) of two fields.
We gave the expressions for the β functions (10) and (11) and the matrices γ� (13), γτ

(17), γcr,s (18) and ω (12), and γcr,a (21) for the model (4) from which the critical exponents
are obtained in one-loop order (for η in two-loop order).

Next we considered its properties under orthogonal transformations of the two fields. Two
types of FPs emerge: four of them are invariant under O(n)×O(2). The other FPs are not
invariant under O(2) and yield lines of FPs. The transformation of the couplings under O(2)

was given.
A classification of the FPs in the large-n limit was given, before they were determined for

general n. Under the numerous FPs the corresponding FPs of the well-known models were
found. To our best knowledge the FPs RS 2.1b and 2.3 are new. RS 2.1b has the remarkable
property that it agrees for arbitrary n with RS 2.1a, which describes two uncoupled systems,
in one-loop order. For these FPs two of the exponents ω vanish in one-loop order. For special
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values of n some of the FPs coincide or yield an extra vanishing ω. This is left for further
discussion.

The full description of the fixed-point structure and the values of the most essential critical
exponents can be useful for analytical and numerical investigation of the critical features of
the system near D = 4. In this way a better understanding of such interesting phenomena as
inverse symmetry breaking, symmetry nonrestoration and reentrant phase transitions could be
obtained. Our model generalizes the O(n)+O(n) and the O(n)×O(2) model giving rise to a
variety of multi-critical phenomena.

Acknowledgments

We are grateful to A I Sokolov, Yu Holovatch and D Mouhanna for interest in our paper, fruitful
discussions and useful suggestions. Yu M Pis’mak was supported in part by the Russian
Foundation of Basic Research (RFRB grant 07-01-00692). A Weber has been supported by a
grant of the LGFG Baden-Württemberg.

Appendix A. Stability matrix in the large-n limit

The stability matrix in one-loop order is given by

ω = ∂β

∂g
= −2ε16 +

n + 8

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2g11 2g12 2g13 0 0 0
g12 g11 + g22 g23 g12 g13 0
g13 g23 g11 + g33 0 g12 g13

0 2g12 0 2g22 2g23 0
0 g13 g12 g23 g22 + g33 g23

0 0 2g13 0 2g23 2g33

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.1)

and yields in the large-n limit for p(1)

ω = −2ε16 + 2εB1B2 (A.2)

with

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2z1 0 0
z2 z1 0
z3 0 z1

0 2z2 0
0 z3 z2

0 0 2z3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B2 =
⎛
⎝z1 z2 z3 0 0 0

0 z1 0 z2 z3 0
0 0 z1 0 z2 z3

⎞
⎠ . (A.3)

The 3 × 3-matrix B2B1

(B2B1)ij = δij + zizj (A.4)

has one eigenvalue 2 and two eigenvalues 1. The matrix B1B2 has the same eigenvalues and
in addition three eigenvalues 0. As a consequence the stability matrix ω has three eigenvalues
−2ε, two eigenvalues 0 and one eigenvalue 2ε independent of z12.

For p(2) the stability matrix reads in this limit

ω = 2ε16 − 2εB1B2 (A.5)

and thus the eigenvalues are the negative of those of ω for p(1).
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